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On the transition to turbulent convection. Part 1. 
The transition from two- to three-dimensional flow 

By R U B Y  KRISHNAMURTI 
Geophysical Fluid Dynamics Institute, Florida State University 

(Received 7 July 1969) 

I n  a horizontal convecting layer several distinct transitions occur before the flow 
becomes turbulent. These are studied experimentally for several Prandtl 
numbers from 1 to lo4. Cell size, plan form, transitions in plan form, transition to  
time-dependence, as well as the heat flux, are measured for Rayleigh numbers 
from lo3 to  lo5. The second transition, occurring a t  around 12 times the critical 
Rayleigh number, is one from steady two-dimensional rolls to  a steady regular 
cellular pattern. There is associated with this a discrete change of slope of the 
heat flux curve, coinciding with the second transition observed by Malkus. 
Transitions to  time-dependence will be discussed in part 2. 

Introduction 
The transition to  turbulence was understood by Malkus (1954b), and by 

Landau (Landau & Lifshitz 1959) t o  occur in the following manner: a t  suffi- 
ciently low values of the determining parameter the flow is stable to all distur- 
bances. As the value of the parameter is increased the flow becomes unstable to  
more and more kinds of disturbances. At sufficiently large values of the para- 
meter, the flow is unstable to so many kinds of disturbances, each occurring with 
random phase, that  i t  i s  difficult t o  describe and is unpredictable in detail. The 
flow is then called turbulent. Unlike the fast transition to turbulence in pipe and 
channel flow, the flow in a horizontal convecting layer undergoes a number of 
discrete transitions, remaining in each regime for a finite range of Rayleigh 
number, which is the determining parameter in this problem. 

This paper, and a following one, are reports on experimental studies of transi- 
tions in a horizontal layer of fluid which is heated uniformly from below and 
cooled uniformly from above. There are twoi dimensionless parameters describing 
this problem. They are the Rayleigh number R, and the Prandtl number Pr, 
defincd a.s follows: 

where g is the acceleration of gravity, a the thermal expansion coefficient, K the 
thermal diffusivity, v the kinematic viscosity, d the layer depth, AT the tempera- 
ture difference across the layer. I n  the order of increasing R, the first transition 

t The third dimensionless parameter, which may be taken to be the aspect ratio (the 
ratio of depth to horizontal extent of the layer), is made small in all these experiments in an 
attempt to approximate a horizontally infinite layer. Effects of varying this aspect ratio 
are discussed later. 

R = (ga/Ku)  ATd3, Pr = U / K ,  
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occurs at  the well-known critical Rayleigh number R,, which is independent of 
Prandtl number. This transition is from the conduction state to a state of steady 
cellular convection. The nature of the flow and the change in slope of the heat 
flux curve have been predicted and experimentally verified. For the vertically 
symmetric problem the only stable finite amplitude solution of the infinite 
number of possible steady solutions is the two-dimensional roll (Schliiter, Lortz 
& Busse 1965). With a vertical asymmetry, such as that produced by changing 
mean temperature or by variation of material properties (Y, K, a) with tempera- 
ture, the conduction state is subcritically unstable to finite amplitude disturbance, 
and the flow near the critical point is hexagonal (Busse 1962; Segel & Stuart 1962; 
Krishnamurti 1968a,b). In  this paper we restrict our attention to the case in 
which rolls are the realized flow just above R,. 

Higher transitions in the heat-flux curve were observed by Malkus (19544 
and confirmed by Willis & Deardorff (1967). It was pointed out by Malkus that 
these transitions occur at Rayleigh numbers corresponding to the linearly 
predicted instability point for the onset of higher vertical modes. However, it is 
difficult to understand how an instability predicted on a linear conduction profile 
can have such a distinct effect in changing the slope of the heat-flux curve at 
Rayleigh numbers where the state is no longer one of conduction. In none of the 
previous studies was there an attempt to observe whether or not a change in the 
flow pattern accompanies these distinct changes in slope. One observational 
study by Rossby (1966) shows that for Prandtl number lo2, rolls are replaced 
by three-dimensional flow at Rayleigh number between 6Rc and 15Rc. Howevcr, 
it is not known if there was a concomitant change of slope of the heat-flux curve. 

The only theoretical study of stability of two-dimensional convection in this 
Rayleigh number range is that of Busse (1968). He shows that for infinite Prandtl 
number, two-dimensional rolls having wave-number p within a finite band (see 
figure 13) are stable to a restricted class of infinitesimal disturbances provided 
that R < 22,600. If R > 22,600 rolls are unstable for all p. Busse shows further 
that the roll plan form is then unstable to a disturbance of rectangular form 
with one side along the original roll axis. It is not known from this theory whether 
the resulting flow above 22,600 is steady. It is also not known how the selection of 
p from this band of possible wave-numbers occurs either in an infinite plane or in 
an experiment approximating an infinite horizontal layer. (This approximation 
is in the sense of Segel (1969), who shows that, for aspect ratio sufficiently small 
and for straight rather than curved rolls, only the edge rolls are affected by the 
side walls.) 

The following questions become conspicuous. In  what region of the space of the 
parameters (R, Pr) does one observe steady two-dimensional rolls ‘1 What is the 
nature of the three-dimensional flows ? Are there regions of parameter space 
where they are regular in spacing, steady in time! Are there time-dependent 
two-dimensional flows ? Are these transitions related to Malkus’s discrete changes 
of slope of the heat flux curve? We attempt to answer some of these questions. 

The study was conducted as a series of externally steady, fixed heat-flux 
experiments. As such, it is free from the criticism, as expressed by Elder (1965) 
for example, of Malkus’s experiments, which were quasi-steady. The experiments 



O n  the transition to turbulent convection. Part 1 297 

of Willis & Deardorff were also quasi-steady. The cell size, the plan form, and 
transitions in plan form, as well as the heat flux and the temperature-difference 
across the layer were measured for several fluids with Prandtl numbers in the 
range 10-104. The steadiness or time-dependence of the flow was tested by the 
technique described in part 2. All experiments reported here in part 1 were 
found to be time-dependent. 

Apparatus and procedure 
The experimental apparatus is shown schematically in figure 1. The fluid layer 

occupies a region 51 by 49 em, with a variable depth of 0.498, 0.988, 1.984, 3.007, 
or 5.000 em. The plexiglass tank containing the fluid also contains four blocks of 
aluminium 6061 T 651. Two of the blocks are 4 in. thick, two are 1 in. thick, each 
is 20 in. by 20 in. wide. The electrical heater, which is a fine mesh of resistance 
material embedded in silicon rubber, is attached to the bottom of the lowest 
block, which is 4 in. thick. The heater is further protected by an additional plate 
of t in .  thick aluminium bolted on to the block and by sealing compound which 
isolate the heater from the fluid. The heat input is controlled by a variable 
transformer backed by a constant voltage transformer of the line voltage. Above 
this lowest aluminium block is a low-conductivity layer of methyl methacrylate. 
A layer of liquid sufficiently thin that it never convects for the temperature 
gradients occurring in these experiments effects constant thermal contact 
between the layers. Above this low conductivity layer is a block of aluminium 
1 in. thick; above this is the convecting fluid, whose depth is defined by plexiglass 
spacers. The arrangement of blocks above the convecting layer is symmetric to 
that below except that the cooling is accomplished by cooling fluid from a 
constant-temperature circulator flowing in channels in the uppermost aluminium 
block. The channels for incoming and outgoing flows are side by side in order to 
minimize horizontal temperature gradients. The channels were cut in a compli- 
cated pattern and spaced so that the separation of channels was not close to an 
integral multiple of the expected convection cell size. The maximum flow rate of 
the cooling fluid is 2.5 gal/min. 

The thermal diffusivity of the aluminium blocks is 0.87 cm2/sec, which is about 
three orders of magnitude larger than that of most liquids. This is, of course, an 
attempt to approach the ideal condition of perfectly conducting boundaries. 
With poorly conducting boundaries a horizontal temperature ripple correspond- 
ing to the cellular structure in the convecting fluid penetrates into the boundaries 
and may control transitions to different cellular structures. Also the aluminium 
acts as a diffuser of any horizontal temperature variations arising from the dis- 
crete nature of the cooling channels. The large mass of metal of approximately 
4001b. acts as a large heat capacity so that temperatures in the blocks are very 
stable. The blocks were lowered into place with the aid of a chain hoist. The 
aluminium plates bounding the fluid were levelled to 2 0-0003 in. in 12 in. 

The above is a description of apparatus presently in use at  F.S.U. Apparatus of 
similar construction was used earlier at  Stanford University and another was 
used still earlier at U.C.L.A. The latter, however, contained a fluid layer which 
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was 30 by 30 cm in horizontal extent. Also, since it was originally designed for 
another experiment, it did not have a constant-temperature cooling bath. The 
cold temperature was maintained by adding ice to a reservoir at regular intervals 
(once every frh for as long as 36 h). 

To determine the heat flux and the temperature difference across the fluid layer, 
four pairs of copper-constantan thermocouples were used. These were made using 
‘thermal free ’ solder and pure resin in alcohol flux to prevent the occurrence of 

switch 

Aluminum 6061 I__( Fluid 

0 Styrofoam m ::t2:rylate lol insulation 

FIGURE 1 .  A schematic diagram of the apparatus for studying horizontal convection. 

extraneous emf’s. After calibrating them, care was taken not to stress them 
excessively. One junction was embedded in each of the aluminium blocks, but was 
electrically isolated from it. The remaining four junctions were placed in a 
common constant-temperature bath. Since the aluminium has high conductivity, 
vertical temperature gradients within it are small (of the order of 10-3 ‘Clem), 
horizontal gradients are even smaller, so that the positioning of the thermo- 
couples within the blocks is not crucial. By means of a rotary switch the emf’s 
from each of the thermocouple pairs were sampled in turn (approximately once 
every minute). The signals were amplified on a Keithley microvolt amplifier 
whose accuracy is k 2 yo of full scale on all ranges. It has 14 overlapping ranges 
from 0.3,uV full scale to 1 V full scale. Most of the signals encountered in this part 
of the study were of the order of 10-100,uV. The zero drift is less than 0.1,uV in 
24 h, and long-term drift is not cumulative. The input noise is less than 5 nV rms 
on the most sensitive range. The Keithley recorder is matched to the amplifier. 

The heat transported by the convecting liquid is measured by concentrating 
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the temperature gradient across the poor conductor in the manner devised by 
Malkus (1954~) .  In the steady state the heat H transported by the fluid is the 
average of the heat conducted across the two poor conductors: 

where kp and k; are the molecular conductivities of the low conductivity layers, 
dp is the depth of the layer, and TI, T2, T3 and T4 are the temperatures of the four 
aluminium blocks. The subscripts are ordered from bottom to top. The conductivi- 
ties kp and k; are measured in terms of that of the liquid when it is known that the 
liquid layer is in a state of steady conduction. Then the following relations hold: 

where k, is the molecular conductivity of the fluid. 
Had the heat flux been measured by the electrical power input, correction 

must be made for the major heat loss downward. The present method is inde- 
pendent of the heat lost by block 1 and gained by block 4. The loss and gain by 
the blocks 2 and 3 are determined as follows: 

where Q is the heat flux through the liquid layer, q the flux through the side walls 
(out a t  block 2,  in at block 3; H = Q + q) .  Since the heating and cooling is sym- 
metric about room temperature, 

a k (AT/21) 
= 2 ( ;(AT/d))’  

where A is the horizontal area of the liquid layer, a the vertical area of the side 
walls surrounding blocks 2 and 3, and I is the thickness of the side wall. This ratio 
is about 0.05 in the conduction rbgime, and even smaller in the convection rbgime. 

Fine aluminium flakes suspended in the liquid were used to visualize the flow. 
A sufficiently small quantity was added so that the visibility through 20in. of the 
liquid was not impaired. The aluminium flakes become aligned in a shear flow, 
and because they are flakes, reflect light more strongly in certain directions, 
depending upon the direction of the shear and of the illumination. I n  a uniform 
shear, the brightness is uniform; where there is a differential shear, there will be 
corresponding bright and dark regions. In  the case of water, aluminium flakes 
would not stay in suspension sufficiently long, so another tracer called ‘rheoscopic 
fluid? AQW 010’ was added to the water. This tracer displays differentia,l shears, 
just as do the aluminium flakes, but remains in suspension about 10 times as long. 

Since the fluid layer is bounded above and below by opaque boundaries, the 
plan form of convection is obtained by viewing the flow from the side as pre- 
viously described (Krishnamurti 1968 b) .  The tracers were illuminated a t  mid- 
depth by narrow overlapping beams of collimated light from two 2 W zirconium 

t Made by Kalliroscope Corporation, Cambridge, Massachusetts. 



300 R. Krishnamurti 

arc lamps. The light source is 0.005in. in diameter and of very high surface 
brightness. The diameter of the beam through the fluid was 2-3mm. The two 
beams directed a t  each other allow visualization of shear regions a t  both positive 
and negative angles to the line of sight. This line of sight is perpendicular to the 
beam. As the light beam is moved horizontally, illuminating different regions of 
the fluid, a camera is moved horizontally on a threaded rod in order to keep the 
illuminated region in focus. Simultaneously, the back of the camera rolls on an 
inclined plane since the camera is free to rotate about an axis through its lens. 
Thus, different regions of the fluid produce images on different parts of the film. 

Fluid 

Air 
Water 
Dow Corning ' 200 ' 

Dow Corning 200 ' 

Chevron white oil 

silicone oil 

silicone oil 

no. 1 

Dow Corning ' 200' 

Dow Corning ' 200 ' 
silicone oil 

silicone oil 

Prandtl 
number 

(Pr)  
0.71 
6.7 

57 

102 

210 

860 

8600 

Kinematic 
viscosity 

(centistokes) 
at  25 "C 

18.5 
1.00 

5.0 

10.0 

15 
(at 24 "C) 

100 

1000 

TABLE 1 

Thermal 
diffusivit y 
( cmz/sec) 

0.264 
1.43 x 10-3 

0.88 x 10-3 

0.98 x 10-3 

0.71 x 10-3 

1.16 x 10--3 

1.18 x 10-3 

Thermal 
expansion 
coefficient 

("C-1) 

3.37 x 10-3 
2.13 x 10-4 

1.05 x 10-3 

1.08 x 10-3 

10-3 

0.96 x 10-3 

0.98 x 10-3 

Layer 
depth 
d (cm) 
5 
1, 2, 3 

1 ,  2, 3 

2,  3 

2 

3 

5 

In  this way, one obtains a picture of the flow pattern as if one were viewing from 
above. The necessary hardware for the photography (synchronous motor, gears, 
threaded rods, power supplies, microswitches, etc.) was mounted on a rigid 
frame built around the convection tank. The entire apparatus was enclosed in a 
light-tight house. 

The routine for obtaining the data was as follows: the fluid was stirred while in 
an isothermal state, to produce a uniform distribution of tracer. The input 
voltage to the heating element was fixed at some desired value by setting the 
variable transformer. The temperature of the cooling fluid was adjusted until 
all four aluminium blocks reached a steady temperature. Since the resistance of 
the heating element is then steady, the power input to the system is steady. The 
four temperatures were recorded and a photograph of the plan form was obtained. 
The photography was repeated until the flow pattern showed no further changes. 
Then the heat input was changed by a few per cent and the process repeated. 

At first it  was tacitly assumed that the discrete changes of slope of the heat-flux 
curve could be observed only in a passive system, such as a slowly decaying 
situation, which produces data points with negligible scatter. Thus, the fixed 
heat-flux data was obtained in no particular order. However, when this data was 
plotted against Rayleigh number two straight lines could be distinguished with 
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considerable scatter near the transition points. This interpretation became even 
clearer when the data points were separated according to the past history of the 
system (whether the previous state was one of higher or lower Rayleigh number 
and how rapidly the state had been attained). Thus, the experiments were 
repeated, obtaining data a t  closer intervals of Rayleigh number, and in the 
following order: starting at some low value of H and R,  H was increased by a few 
per cent, the data recorded after steady state was attained, then H was increased 
again by a few per cent. At no time was it allowed to decrease until a desired 
upper value of H ,  R was attained. The system was then taken to a low value of 
( H ,  R )  by small decreases in H ,  separated by steady states. Thus the system was 
continuously convecting for periods of several weeks. 

Care was taken to perform all experiments symmetrically, heating and cooling 
by the same amount about room temperature. Non-Boussinesq effects were kept 
below 2 yo by using temperature differences less than about 2 "C. 

The procedure was repeated for the fluids (except air) whose properties are 
listed in table 1 .  

Experimental results 
A typical plot of heat flux H versus Rayleigh number R is shown in figure 2 .  

H has been non-dimensionalized so that the conductive heat flux equals R ;  that 
is, H = NR where N is the Nusselt number. The data is very well represented by 
two intersecting straight lines. The transition Rayleigh number RII, at which 
there is a change of slope when R,, is approached from below, is listed in table 2. 
The other fluids displayed the same distinct change of slope as seen in figure 2, 
but there was an unexplained difference in the magnitude of this change of slope. 
The relevant data is shown in table 2. The value of R,, for Pr = 6.7 coincides with 
the second transition observed by Malkus (1954a), in one case, in water. 

The scatter in the data as seen in figure 2 is of the order of the amplifier sensi- 
tivity, which is also approximately the error in reading the instrument. The error 
in determining R,, is about 15 yo in this case. In  cases in which all the data was 
not obtained in one continuous run, the error in determining R,, is larger. 

The values of R,, for the various fluids are not interpreted as showing a definite 
Prandtl-number dependence since the transition is one displaying hysteresis. 
When R,, is approached from above, the heat flux is larger than that obtained 
when R,, is approached from below. This is seen in figure 3. Also, the three- 
dimensionality (discussed below) persists below RII. It is suggested that the two 
heat-flux states are metastable states above some finite Rayleigh number 
(about 4RJ. The lower-heat flux state, with two-dimensional flow, is attained if 
the Rayleigh number is increased in small steps from below. If a Rayleigh number 
R such that 4Rc < R < R,, is attained from below and the fluid is then stirred, 
the resulting state was found to be on the upper heat flux curve. 

The additional transition observed by Willis & Deardorff at  4.8Rc is not 
apparent in figure 4,  where the range and steps of R were chosen to look for 
this transition. The above discussion helps clarify this discrepancy. Three- 
dimensional flows have been observed at  about 5Rc by Koschmieder (1966),  by 



302 R. Krishnamurti 

Krishnamurti (1967) due to sudden change in R (see figure 8), and in the present 
study with Rayleigh number decreased from above RII. The hysteresis found 
in the present study implies a finite ampitude instability which may be excited 
below R,, by a number of disturbances which would be difficult to trace. 

i I I I 1 I I I I I I 
0 1 2 3 4 5 6 7 

Rayleigh number ( x 

FIGURE 2. Heat flux plotted against Rayleigh number, showing the second transition. The 
heat flux has been non-dimensionalized so that it is the product of Nusselt and Rayleigh 
numbers. The Prandtl number is 1.0 x lo2. 

dH 
dR 

Slopc - 
dH 

Slope - 
dR 

P V  d(cm) R,, for R < R,, for R > R,, Change of slope 
- 2.7, - __ 

6.7 2 10R, f 6 % 2.7, 4.6, 1.9 

860.0 3 13Rc+25y0 3.1 4.1 1.0 
8500.0 5 10Rc 5 yo 3.4 4.2 0.8 
P r + m  - 13R,i- 

6.7 1 

- - _. 57.0 2 1 3Rc 
100.0 2 13Rc k 15 yo 3.0 4.3 1.3 

- - - 

t This is the value computed by Busse (1968). 

TABLE 2. Transition Rayleigh number, R,,, for various Prandtl numhcrs. P r  

The change of slope at RII, when R,, was approached from below, was aecom- 
panied by a change in plan form from two-dimensional to three-dimensional 
flow. Photographs of the plan form (obtained from the side of the tank) are 
shown in figures 5 to 8 (plates 1-3). These will now be described in detail. 
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To find the point a t  which two-dimensional rolls become unstable, giving rise 
to three-dimensional flow, one must clearly start with well-defined rolls. The 
evolution of the plan form to two-dimensionality a t  a fixed Rayleigh number 
below RII is shown in figures 5(a,b)  (plate 1). As explained previously (Krish- 
namurti 1968b), in a square container rolls start in a square array if the system is 

0 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

5.0 7.0 9.0 11 13 15 17 19 21 23 25 27 29 
Rayleigh number ( x 

FIGURE 3. Heat flux plotted against Rayleigh number, showing hysteresis near the second 
transition. The Prandt,l number is 0.85 x 104. -o-o-o-, R increased; -o--o-, R decreased. 

Rayleigh number ( x 

FIGURE 4. Heat flux plotted against Rayleigh number near 4*8R,. The Prandtl number 
is 6.7. 
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taken slowly through R,, but never remain in this form. The time scale for 
rearrangement is understood as follows. The vertical thermal diffusion time 
rt = d2/K is of the order of hours (3-7 h in these experiments). The horizontal 
thermal diffusion time is 1 month for the 50 em wide tank. The viscous diffusion 
time d2 /v  is of the order of seconds or minutes. Suppose that at sufficiently low 
Rayleigh number three-dimensional flow is unstable, but exists initially because 
of the geometry of the container. As the three-dimensionality decays, the 
neighbouring cells must adjust to the change. This adjustment can occur by 
information propogating by diffusion or by advection. Newel1 & Whitehead 
(1 969) show that spatial non-uniformities of small but finite amplitude propagate 

Pr+1L2 
d -  Pr K 

by diffusion with time scale 
7 

to some characteristics distance L. For larger Pr this becomes the thermal 
diffusion time, for small Pr the viscous diffusion time. It i s  noted that for R 
near Rc the orbit time of a parcel of fluid, 

is much greater than the diffusion time rt. Here R, is a number dependent upon 
Pr, computed by Schluter, Lortz & Busse to be of the order of R,. For some larger 
R the orbit time becomes smaller than the diffusion time. The neighbouring cell 
then takes a t  least an orbit time (not necessarily given by ( 2 )  above) to readjust. 
After this time the next adjacent cell must readjust. Thus, the time required is the 
number N of cells across the container times r,,, which depends upon Rayleigh 
number. The readjustment time is therefore greater than the vertical diffusion 
time but less than the horizontal diffusion time. The two tanks used had horizontal 
size L, = 30 em and L, = 50 em. Comparing cases in which d, K and R had tQe 
same values in both experiments, so that N is proportional to L, in one case and 
to L, in the other, the ratio of the time for straightening of the rolls was LJL, 
rather than (LJL,),. The resulting straight rolls are what Segel (1969) calls 
‘spatially modulated’ rolls in a ‘shallow dish’. For these the distortion due to 
the side walls disappears within the width of two rolls. After the rolls became 
straight, or nearly so, there was no further tendency to change. Figures 5 ( b )  
(plate I), and 6 (a) (plate 2) are examples of almost straight rolls which began as 
rolls in a square array. The difference in heat flux between the initial rolls in the 
square array and the final straight rolls is not more than the scatter shown in the 
heat flux curve in figure 2 .  

After the rolls became straight the heat flux, and hence the Rayleigh number, 
were increased in small steps punctuated by long periods of steady external 
conditions. It was found that the only change that occurred below R,, was an 
increase in the width of the roll. This is seen in figure 5(c) (plate 1). Figures 
5 (c) and 6 (c) (plate 2) show a three-dimensional structure over part of the region 
which is not inconsistent with the concept of metastable states. 

When R was increased to a value greater than RII,  a disturbance was seen to 
form on the rolls. I n  figures 5 (e) (plate l), 6 ( 6 ,  cl) (plate 2 )  the flow is obviously 
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(4 (f) 
FIGURE 5. The plan form of convective flow, Prandtl number 1.0 x lo2. (a )  R = 3.2Rc, 
day 1 ; the flow pattern shows the influence of a square boundary. ( b )  R = 3.2Rc, day 4, the 
flowpatternis approaching the form of straight rolls. (c) R = 6.8R,, day 6. ( d )  R = 12.1RC, 
day 8. ( e )  R = 15R,, day 9. (f)  R = 20R,, day 10. 

KRISHNAMURTI (Facing p. 304) 
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(c) (4 
FIGURE 6. The plan form of convective flow, Prandtl number 0.86 x lo3. (a) Rolls parallel 
to one wall, R = 2.7R, and ( b )  the three-dimensional disturbance that forms on these 
rolls, R = 12 R,. In a repetition of the same experiment, rolls perpendicular t o  those in (a )  
are seen in (c), R = 9.0R, and ( d )  shows the three-dimensional disturbance that formed on 
the rolls seen in (c), R = 12.2RC. 

KRISHNAMURTI 
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FIGURE 7 .  The plan form of convective flow, R = 33R,, Prandtl nurnbtr is 67. 

(4 ( b )  

FIGURE 8. Planformsofconvectionfor Prandtl number 1.7 x lo3. (a )  R = 1*8R,, dRld t  = 0,  
( b )  R = 4R,, l / R , d R / d t  = 6 x 10-5 sec-I. 

KRISHNAMURTI 
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Both Davis (1967) and Segel (1969) show that spatially modulated rolls will 
line up with their axes parallel to the short side of a rectangular container. I n  
this experiment conducted in an almost square container? there appears to be 
little preference of orientation of the rolls. Figures 6 (a ,  c )  (plate 2) show rolls 
along the line of sight and perpendicular to the line of sight in two different 
repetitions of the same experiment. 
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- 

- 

- 

- 

- 
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three-dimensional. (Photographs of the plan form were obtained at  frequent 
intervals, but only those showing a distinct change are shown here.) The change 
in flow pattern occurs at  a Rayleigh number coinciding with RI,, within experi- 
mental error. 

It was stated that the heat flux curve of figure 4 shows no change of slope at 
4.8Rc. The flow pattern also showed no marked change up to about 10Rc except 
for an increase in roll width. 
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The three-dimensional disturbance that forms on the rolls above R,, is con- 
sistent with Busse’s instability to a rectangular disturbance. Since the method 
of photography displays regions of strong shear, the hypotenuse of the rectangle 
should appear bright. Thus, the nature of the growing mode (which is found 
experimentally to attain a steady state) is in agreement with Busse’s result. It 
may be noted that the rectangular disturbance of his theory is one with symmetry 
in the vertical. The point of transition is also in good agreement with that 
computed by Busse, for that wave-number /3 which occurs in the experiment, 
although the selection mechanism of that /3 is not understood. 

For R just above RII, the original rolls are distinguishable and the rest of the 
flow pattern may be called a disturbance. As R is increased still further, the 
disturbance becomes more prominent. At 33Rc the flow pattern, as seen in figure 
7 (plate 3)) is entirely three dimensional. 

When the Rayleigh number is decreased from a value above RIr, again in small 
steps punctuated by long periods (days) of steady state, the three-dimensionality 
remains to Rayleigh numbers smaller than R,,. For Prandtl number 0.86 x 10s 
the three-dimensionality was apparent as low as 7Rc, and for Prandtl number 
0.85 x lo4, as low as 4-5Rc. The cell size is also larger than at the corresponding 
Rayleigh number approached from below. 

The observed wave-number p (equal to n times the layer depth divided by the 
observed roll width) is plotted on Busse’s stability diagram in figure 9. The 
arrows indicate whether R was increased from below or decreased from above. 
Hysteresis in /3 is apparent. Care was taken to measure only straight rolls so that 
one unambiguous number could be obtained. The broken lines in figure 9 represent 
the observed wave-number after a three-dimensional disturbance has set in. In 
this case /3 refers to the wave-number of the rolls (which are still distinguishable). 
It is seen from figure 9 that the cell size depends upon Prandtl number, perhaps 
upon aspect ratio, and most definitely upon its past history. Most notable is the 
fact that, when the cell size is allowed to evolve freely (without being forced as 
in the experiments of Chen & Whitehead 1968), approximately one-half of 
Busse’s stability diagram is filled with observations, but the domain /3 > pc is 
conspicuously bare. 

Conclusions 
There is a second transition in a horizontal convecting layer, characterized by 

the following properties: 
(i) There is a discrete change of slope of the heat flux curve at Rayleigh number 

R,, near 12Rc, showing no definite Prandtl number dependence in the range 
10 < Pr < lo4. 

(ii) There is a change in the flow pattern from two-dimensional rolls to a three- 
dimensional flow which is periodic in space and steady in time. The change occurs 
at a Rayleigh number coinciding with R,, to within the error in determining RII. 

(iii) There is hysteresis in the heat flux as well as in the flow pattern as R is 
increased from below or decreased from above, indicating that the transition is 
caused by a finite amplitude instability. 
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